If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+8+1=16
We move all terms to the left:
16x^2+8+1-(16)=0
We add all the numbers together, and all the variables
16x^2-7=0
a = 16; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·16·(-7)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*16}=\frac{0-8\sqrt{7}}{32} =-\frac{8\sqrt{7}}{32} =-\frac{\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*16}=\frac{0+8\sqrt{7}}{32} =\frac{8\sqrt{7}}{32} =\frac{\sqrt{7}}{4} $
| 8x+2+55+75=180 | | -8x^2+6+22x=0 | | 1.3x-2.6=3.9 | | 5x2−10x−13=9x−9 | | 16x^2+18+1=16 | | 2x^2-5x+2=02x2−5x+2=0 | | 4^4x-1=32 | | y/4−3=1 | | x-3-8=11 | | 3x+20=92-5x | | 48+x+80+60=180 | | y3+4=7 | | 2x^2+6x-2=5x+1 | | 2x+7=12+x | | 3x+4=49−2x | | 6x^2+7x-7=-96x2+7x−7=−9 | | 6(x-6)+6=8x- | | 8x-32=9x+56 | | 6x+3+55+80=180 | | 7x16=4x+4 | | 1k+7-(2k+5)=-1+2 | | 7x=112-7x | | 3x^=16x+12 | | t2+10=12 | | 7c-5c=4=4c-10 | | v/4=-28 | | 2x^2-2-x+52=16 | | X^2+17x-2100=0 | | 5=10x+45 | | Y=-9/2x-3 | | 7x+3+80+55=180 | | 2x−6=4x+6 |